常数项级数的敛散性的判别、幂级数的收敛域及和函数、幂级数的展开式及傅里叶的展开式是考研数学一中常考的知识点,需要考生复习时多重视,下面就具体和大家来谈谈,且针对这几个难点给大家的复习提点建议。  一、常数项级数的敛散性的判别
  十年中2009和2014年考过两次常数项级数的敛散性的判别, 2014年的这个题很多考生基本上得了零分,常数项级数的敛散性的判别是一个难点:这个题考了三角函数的和差化积和比较审敛法。其实若从历年考研数学一的考题中,我们可以归纳总结出对常数项级数的考查,考研考查的方法重点是比较审敛法,而作为基准级数的是P-级数。
  二、幂级数的收敛域及和函数
  考生可以看到,对级数这一章,数一的同学要将幂级数的和函数作为重点知识来复习,十年中幂级数的和函数的考题最多。幂级数的和函数又分为先导后积、先积后导。两种方法大家都要掌握。
  三、幂级数的展开式
  考生可以将高数上册的泰勒展开式做一个拓展就是高数下册的幂级数的展开式,考研考查的主要是几何级数展开式。
  四、傅里叶的展开式
  2008年数学一考了一个傅里叶的展开式,傅里叶的展开式一般对数一的同学来说以小题的形式考的,但2008年出了黑马,这个题提醒考生在数学的学习过程中要复习全面,不可以有所偏颇,但在复习过程中要把握复习深度,对傅里叶级数的掌握只需掌握基础知识即可。
  针对高数中的这一难点,2017年的考生在未来的学习过程中应该制定详细的复习规划:
  1)、基础过关 Now-6 月,高数:同济六版;线代:同济五版;概率:浙大四版。系统复习,夯实基础:熟练掌握基本概念、基本理论和基本方法
  2)、专题训练 7月---9月,针对常考的题型进行大量的练习,归纳题型,总结方法,突破重难点题型、方法和技巧
  3)、综合突破 10月---11月,对综合题进行窜讲,形成对考研的整体认识,将知识体系结构搭建起来。
  4)、全真模拟 11月---12月,转化为得分,现场模拟考研是什么样子,查漏补缺,实战演练
  5)、考前攻坚 12月(考前两周),回归基础、攻克难点